Show simple item record

dc.contributor.advisorSamuel R. Madden.en_US
dc.contributor.authorTu, Stephen Lyleen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-11-18T19:15:24Z
dc.date.available2013-11-18T19:15:24Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82375
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 55-57).en_US
dc.description.abstractThough modern multicore machines have sufficient RAM and processors to manage very large in-memory databases, it is not clear what the best strategy for dividing work among cores is. Should each core handle a data partition, avoiding the overhead of concurrency control for most transactions (at the cost of increasing it for cross-partition transactions)? Or should cores access a shared data structure instead? We investigate this question in the context of a fast in-memory database. We describe a new transactionally consistent database storage engine called MAFLINGO. Its cache-centered data structure design provides excellent base key-value store performance, to which we add a new, cache-friendly serializable protocol and support for running large, read-only transactions on a recent snapshot. On a key-value workload, the resulting system introduces negligible performance overhead as compared to a version of our system with transactional support stripped out, while achieving linear scalability versus the number of cores. It also exhibits linear scalability on TPC-C, a popular transactional benchmark. In addition, we show that a partitioning-based approach ceases to be beneficial if the database cannot be partitioned such that only a small fraction of transactions access multiple partitions, making our shared-everything approach more relevant. Finally, based on a survey of results from the literature, we argue that our implementation substantially outperforms previous main-memory databases on TPC-C benchmarks.en_US
dc.description.statementofresponsibilityby Stephen Lyle Tu.en_US
dc.format.extent57 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleFast transactions for multicore in-memory databasesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc862074778en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record