MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Increasing supply chain robustness through process flexibility and strategic inventory

Author(s)
Wang, He, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (2.965Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering.
Advisor
David Simchi-Levi.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
When a disruption brings down one of company's manufacturing facilities, it can have a ripple effect on the entire supply chain and threaten the company's ability to compete. In this thesis, we develop an effective disruption mitigation strategy by using both process flexibility and strategic inventory. The model is focused on a manufacturer with multiple plants producing multiple products, where strategic inventory can be held for any product. We propose a new metric of supply chain robustness, defined as the maximum time that no customer demand is lost regardless of which plant is disrupted. Using this metric, we analyze K-chain flexibility designs in which each plant is capable of producing exactly K products. It is demonstrated that a 2-chain design, which is known to be effective for matching supply with demand when there is no disruption, is not robust when there is both disruption and demand uncertainty. However, it is shown that a 3-chain design is significantly more robust and achieves the same robustness as full flexibility under high uncertainty level. We then extend the model to an assembly system and find that investment in process flexibility designs changes the optimal inventory placements. In particular, when the degree of flexibility is high, more inventory is allocated to standard components, i.e. components used by multiple products, but when the degree of flexibility is low, more inventory is allocated to non-standard components.
Description
Thesis (S.M. in Transportation)--Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 73-75).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/82860
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.