Show simple item record

dc.contributor.advisorDavid Simchi-Levi.en_US
dc.contributor.authorWang, He, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.date.accessioned2013-12-06T20:50:10Z
dc.date.available2013-12-06T20:50:10Z
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82860
dc.descriptionThesis (S.M. in Transportation)--Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 73-75).en_US
dc.description.abstractWhen a disruption brings down one of company's manufacturing facilities, it can have a ripple effect on the entire supply chain and threaten the company's ability to compete. In this thesis, we develop an effective disruption mitigation strategy by using both process flexibility and strategic inventory. The model is focused on a manufacturer with multiple plants producing multiple products, where strategic inventory can be held for any product. We propose a new metric of supply chain robustness, defined as the maximum time that no customer demand is lost regardless of which plant is disrupted. Using this metric, we analyze K-chain flexibility designs in which each plant is capable of producing exactly K products. It is demonstrated that a 2-chain design, which is known to be effective for matching supply with demand when there is no disruption, is not robust when there is both disruption and demand uncertainty. However, it is shown that a 3-chain design is significantly more robust and achieves the same robustness as full flexibility under high uncertainty level. We then extend the model to an assembly system and find that investment in process flexibility designs changes the optimal inventory placements. In particular, when the degree of flexibility is high, more inventory is allocated to standard components, i.e. components used by multiple products, but when the degree of flexibility is low, more inventory is allocated to non-standard components.en_US
dc.description.statementofresponsibilityby He Wang.en_US
dc.format.extent75 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleIncreasing supply chain robustness through process flexibility and strategic inventoryen_US
dc.typeThesisen_US
dc.description.degreeS.M.in Transportationen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc863439081en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record