Show simple item record

dc.contributor.advisorSteven G. Johnson.en_US
dc.contributor.authorLiang, Xiangdong, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mathematics.en_US
dc.date.accessioned2014-01-09T19:45:53Z
dc.date.available2014-01-09T19:45:53Z
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/83696
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Department of Mathematics, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 133-142).en_US
dc.description.abstractCapillary instability (Plateau-Rayleigh instability) has been playing an important role in experimental work such as multimaterial fiber drawing and multilayer particle fabrication. Motivated by complex multi-fluid geometries currently being explored in these applications, we theoretically and computationally studied capillary instabilities in concentric cylindrical flows of N fluids with arbitrary viscosities, thicknesses, densities, and surface tensions in both the Stokes regime and for the full Navier-Stokes problem. The resulting mathematical model, based on linear-stability analysis, can quickly predict the breakup lengthscale and timescale of concentric cylindrical fluids, and provides useful guidance for material selections and design parameters in fiber-drawing experiments. A three-fluid system with competing breakup processes at very different length scales is demonstrated with a full Stokes flow simulation. In the second half of this thesis, we study large-scale PDE-constrained microcavity topology optimization. Applications such as lasers and nonlinear devices require optical microcavities with long lifetimes Q and small modal volumes V. While most microcavities are designed mostly by hand using some understanding of the physical principles of the confinement, we let the computer discover its own structures. We formulate and solve a full 3d optimization scheme over all possible 2d-lithography patterns in a thin dielectric film. The key to our formulation is a frequency-averaged local density of states (LDOS), where the frequency averaging corresponds to the desired bandwidth, evaluated by a novel technique: solving a single electromagnetic wave scattering problem at a complex frequency.en_US
dc.description.statementofresponsibilityby Xiangdong Liang.en_US
dc.format.extent142 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMathematics.en_US
dc.titleModeling of fluids and waves with analytics and numericsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.oclc864150895en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record