Show simple item record

dc.contributor.advisorDaniel G. Nocera.en_US
dc.contributor.authorPizano, Arturo A. (Arturo Alejandro)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Chemistry.en_US
dc.date.accessioned2014-01-23T18:40:00Z
dc.date.available2014-01-23T18:40:00Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/84377
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2013.en_US
dc.descriptionCataloged from PDF version of thesis. Vita.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractProton-coupled electron transfer (PCET) is a critical mechanism in biology, underpinning key processes such as radical transport, energy transduction, and enzymatic substrate activation. Ribonucleotide reductases (RNRs) rely on PCET to mediate the rate-limiting step in the synthesis of DNA precursors. E. coli class Ia RNR consists of two dimeric subunits: [alpha]₂ contains the active site, while [beta]₂ contains a stable diferric-tyrosyl radical cofactor. During turnover, transport occurs over 35 Ȧ, from Y₁₂₂ in [beta]₂ to C₄₃₉ in [alpha]₂) where an active-site thiyl radical mediates turnover. Radical transport is proposed to occur over a series of highly conserved redox-active amino acids, including Y₃₅₆ in [beta]₂,and Y₇₃₁ and Y₇₃₀ in [alpha]₂ . This thesis examines three subject areas of PCET that pertain to RNR: Small-molecule model systems provide insights into tyrosine oxidation and radical generation. Under physiological conditions, tyrosine oxidation is accompanied by deprotonation and occurs by PCET. A critical factor in PCET reactions is the nature ofthe proton acceptor and the presence ofhydrogen bonding. In a modular model system, pyridyl-amino acid-methyl esters are appended to rhenium(I) tricarbonyl phenanthroline to yield rhenium-amino acid complexes. In dichloromethane solution, bases coordinate to tyrosine by hydrogen bonding. Emission kinetics reveal base-dependent oxidation by PCET. A photopeptide composed of the 19 C-terminal residues of [beta]₂, fluorinated tyrosine in place of Y₃₅₆, and a rhenium(I) bipyridine photooxidant enables photoinitated radical transport into [alpha]₂. Transient absorption kinetics show rapid radical transport (10⁵ s-¹) that is only observed when both Y₇₃₁ and Y₇₃₀, are present, suggesting a critical role for the Y₇₃₁-Y₇₃₀, dyad for radical transport in RNR. An intact, photochemical [beta]₂ enables studies of an [alpha]₂:[beta]₂ complex. A bromomethylpyridine rhenium(I) phenanthroline photooxidant labels a single surface-cysteine mutant of [beta]₂ at position 355 to yield [Re]- [beta]₂. Under flash-quench conditions, transient absorption reveals a tyrosine radical. [Re] -[beta]₂ binds [alpha]₂ and is capable of light-initiated substrate turnover. Transient emission quenching experiments reveal Y₃₅₆ oxidation that is dependent on the presence of Y₇₃₁ in [alpha]₂. This result suggests that a Y₃₅₆-Y₇₃₁-Y₇₃₀ triad mediates radical transport across the subunit interface and into [alpha]₂.en_US
dc.description.statementofresponsibilityby Arturo A. Pizano.en_US
dc.format.extent202 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemistry.en_US
dc.titlePhotoinitiated proton-coupled electron transfer and radical transport kinetics in class la ribonucleotide reductaseen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc867637303en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record