MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Establishing geochemical constraints on mass accumulation rates across the Cretaceous-Paleogene boundary with extraterrestrial Helium-3

Author(s)
Giron, Marie Minh-Thu
Thumbnail
DownloadFull printable version (5.702Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.
Advisor
Roger E. Summons.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Records of ocean biogeochemistry in marine sediments show shifts across the Cretaceous-Paleogene boundary (K-Pg) that are simultaneous with the extinction event and onset of the boundary clay deposition. However, the timescale of these records is difficult to determine near the boundary because of fluctuating sedimentation rates and the short duration of the event. In this study, we have used extraterrestrial helium-3 as a constant flux proxy for instantaneous mass accumulation rates in four marine sections: Caravaca, Spain; El Kef, Tunisia; and Hojerup and Kulstirenden, Denmark. These sections are characterized by a thick boundary clay layer and, therefore, are more suitable than many other proxies for high-resolutions studies. In order to better understand the extent of the impact-related perturbations in different paleoenvironments, we performed a high-resolution analysis at Caravaca and lower-resolution analyses at the other three sections. We find that Hojerup and Kulstirenden are not suitable for this analysis due to the probable variation in the flux of extraterrestrial helium-3 as a result of lateral changes in sedimentation rate. Our results suggest that carbonate burial, and likely carbonate production, were more severely affected with increasing paleolatitude. However, the unique depositional environments are probably much more important than just paleolatitude alone. We calculate boundary clay durations of Caravaca and El Kef of 6.45 (h 0.86) kyr and 6.28 (± 1.03) kyr, respectively. These results are consistent with other studies and indicate a uniform, global deposition of the boundary clay and a rapid recovery of carbonate burial in the marine ecosystem after the Cretaceous-Paleogene extinction event.
Description
Thesis (S.M. in Earth and Planetary Sciences)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 67-71).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/84912
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Earth, Atmospheric, and Planetary Sciences.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.