Show simple item record

dc.contributor.advisorAlexandra H. Techet.en_US
dc.contributor.authorMendelson, Leah Roseen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2014-03-05T15:56:12Z
dc.date.available2014-03-05T15:56:12Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/85223
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2013.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 81-86).en_US
dc.description.abstractAbstract This thesis details the implementation of a three-dimensional PIV system to study the hydrodynamics of freely swimming Giant Danio (Danio aequipinnatus). Volumetric particle fields are reconstructed using synthetic aperture refocusing. The experiment is designed with minimal constraints on animal behavior to ensure that natural swimming occurs. Resultantly, the fish exhibits a variety of forward swimming and turning behaviors at speeds between 1.0-1.5 body-lengths/second. During these maneuvers, the imaging system is also used to track and reconstruct the fish body. The resultant velocity fields are used to characterize the size and shape of the vortex rings shed by the fish during forward swimming and turning. Results show clearly isolated and linked vortex rings in the wake structure, as well as the thrust jet coming off of a visual hull reconstruction of the fish body. Depending on the maneuver, the amount of symmetry in the wake varies, emphasizing the shortcomings of a single planar slice to characterize these behaviors. The additional information provided by volumetric measurement is also used to analyze the momentum in the fish's wake. The circulation of the vortex rings is computed across several slices of the ring taken through its center axis and analyzed over time. Circulation can be used to compute the fluid impulse in the vortex ring to better understand propulsive performance. The measured impulse, combined with visualization of the wake, provides a comparison between forward swimming and turning based on volumetric measurements. The development of this system lays a foundation for further volumetric studies of swimming hydrodynamics.en_US
dc.description.statementofresponsibilityby Leah Rose Mendelson.en_US
dc.format.extent86 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleVolumetric analysis of fish swimming hydrodynamics using synthetic aperture particle image velocimetryen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc870997936en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record