MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interannual variability of the Pacific water boundary current in the Beaufort Sea

Author(s)
Brugler, Eric T
Thumbnail
DownloadFull printable version (17.45Mb)
Other Contributors
Woods Hole Oceanographic Institution.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Between 2002 and 2011 a single mooring was maintained in the core of the Pacific Water boundary current in the Alaskan Beaufort Sea near 152° W. Using velocity and hydrographic data from six year-long deployments during this time period, we examine the interannual variability of the current. It is found that the volume, heat, and freshwater transport have all decreased drastically over the decade, by more than 80%. The most striking changes have occurred during the summer months. Using a combination of weather station data, atmospheric reanalysis fields, and concurrent shipboard and mooring data from the Chukchi Sea, we investigate the physical drivers responsible for these changes. It is demonstrated that an increase in summertime easterly winds along the Beaufort slope is the primary reason for the drop in transport. The intensification of the local winds has in turn been driven by a strengthening of the summer Beaufort High in conjunction with a deepening of the summer Aleutian Low. Since the fluxes of mass, heat, and freshwater through Bering Strait have increased over the same time period, this raises the question as to the fate of the Pacific water during recent years and its impacts. We present evidence that more heat has been fluxed directly into the interior basin from Barrow Canyon rather than entering the Beaufort shelfbreak jet, and this is responsible for a significant portion of the increased ice melt in the Pacific sector of the Arctic Ocean.
Description
Thesis: S.M., Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2013.
 
Includes bibliographical references (pages 133-141).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/85389
Department
Joint Program in Applied Ocean Physics and Engineering; Woods Hole Oceanographic Institution; Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Joint Program in Applied Ocean Science and Engineering., Mechanical Engineering., Woods Hole Oceanographic Institution.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.