MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting extreme events : the role of big data in quantifying risk in structural development

Author(s)
Newth, Oliver Edward
Thumbnail
DownloadFull printable version (8.007Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering.
Advisor
Pierre Ghisbain and Jerome J. Connor.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Engineers are well-placed when calculating the required resistance for natural and non-natural hazards. However, there are two main problems with the current approach. First, while hazards are one of the primary causes of catastrophic damage and the design against risk contributes vastly to the cost in design and construction, it is only considered late in the development process. Second, current design approaches tend to provide guidelines that do not explain the rationale behind the presented values, leaving the engineer without any true understanding of the actual risk of a hazard occurring. Data is a key aspect in accurate prediction, though its sources are often sparsely distributed and engineers rarely have the background in statistics to process this into meaningful and useful results. This thesis explores the existing approaches to designing against hazards, focussing on natural hazards such as earthquakes, and the type of existing geographic information systems (GIS) that exist to assist in this process. A conceptual design for a hazard-related GIS is then proposed, looking at the key requirements for a system that could communicate key hazard-related data and how it could be designed and implemented. Sources for hazard-related data are then discussed. Finally, models and methodologies for interpreting hazard-related data are examined, with a schematic for how a hazard focussed system could be structured. These look at how risk can be predicted in a transparent way which ensures that the user of such a system is able to understand the hazard-related risks for a given location.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 71-73).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/90028
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.