Show simple item record

dc.contributor.advisorPierre Ghisbain and Jerome J. Connor.en_US
dc.contributor.authorNewth, Oliver Edwarden_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.date.accessioned2014-09-19T21:35:19Z
dc.date.available2014-09-19T21:35:19Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/90028
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 71-73).en_US
dc.description.abstractEngineers are well-placed when calculating the required resistance for natural and non-natural hazards. However, there are two main problems with the current approach. First, while hazards are one of the primary causes of catastrophic damage and the design against risk contributes vastly to the cost in design and construction, it is only considered late in the development process. Second, current design approaches tend to provide guidelines that do not explain the rationale behind the presented values, leaving the engineer without any true understanding of the actual risk of a hazard occurring. Data is a key aspect in accurate prediction, though its sources are often sparsely distributed and engineers rarely have the background in statistics to process this into meaningful and useful results. This thesis explores the existing approaches to designing against hazards, focussing on natural hazards such as earthquakes, and the type of existing geographic information systems (GIS) that exist to assist in this process. A conceptual design for a hazard-related GIS is then proposed, looking at the key requirements for a system that could communicate key hazard-related data and how it could be designed and implemented. Sources for hazard-related data are then discussed. Finally, models and methodologies for interpreting hazard-related data are examined, with a schematic for how a hazard focussed system could be structured. These look at how risk can be predicted in a transparent way which ensures that the user of such a system is able to understand the hazard-related risks for a given location.en_US
dc.description.statementofresponsibilityby Oliver Edward Newth.en_US
dc.format.extent73 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titlePredicting extreme events : the role of big data in quantifying risk in structural developmenten_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc890138627en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record