MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data-driven models for uncertainty and behavior

Author(s)
Gupta, Vishal, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (3.267Mb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Dimitris Bertsimas.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The last decade has seen an explosion in the availability of data. In this thesis, we propose new techniques to leverage these data to tractably model uncertainty and behavior. Specifically, this thesis consists of three parts: In the first part, we propose a novel schema for utilizing data to design uncertainty sets for robust optimization using hypothesis testing. The approach is flexible and widely applicable, and robust optimization problems built from our new data driven sets are computationally tractable, both theoretically and practically. Optimal solutions to these problems enjoy a strong, finite-sample probabilistic guarantee. Computational evidence from classical applications of robust optimization { queuing and portfolio management { confirm that our new data-driven sets significantly outperform traditional robust optimization techniques whenever data is available. In the second part, we examine in detail an application of the above technique to the unit commitment problem. Unit commitment is a large-scale, multistage optimization problem under uncertainty that is critical to power system operations. Using real data from the New England market, we illustrate how our proposed data-driven uncertainty sets can be used to build high-fidelity models of the demand for electricity, and that the resulting large-scale, mixed-integer adaptive optimization problems can be solved efficiently. With respect to this second contribution, we propose new data-driven solution techniques for this class of problems inspired by ideas from machine learning. Extensive historical back-testing confirms that our proposed approach generates high quality solutions that compare with state-of-the-art methods. In the third part, we focus on behavioral modeling. Utility maximization (single agent case) and equilibrium modeling (multi-agent case) are by far the most common behavioral models in operations research. By combining ideas from inverse optimization with the theory of variational inequalities, we develop an efficient, data-driven technique for estimating the primitives of these models. Our approach supports both parametric and nonparametric estimation through kernel learning. We prove that our estimators enjoy a strong generalization guarantee even when the model is misspecified. Finally, we present computational evidence from applications in economics and transportation science illustrating the effectiveness of our approach and its scalability to large-scale instances.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2014.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
117
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 173-180).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/91301
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.