Prototyping practices in electromechanical startups
Author(s)
Chu, Angela (Angela J.)
DownloadFull printable version (136.0Kb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Warren P. Seering.
Terms of use
Metadata
Show full item recordAbstract
Electromechanical startups contend with signicant uncertainty, especially in early stages of development. Prototyping is a critical component through the product development process, and when employed eciently, can act as a method for mitigating risk associated with product viability for founders and funders. While extensive research has been conducted on prototyping practices in industry, there has been little investigation into prototyping for electromechanical startups. This research aims to understand current prototyping practices in these environments by answering the following questions. What kinds of prototypes do startups develop? What functions do these prototypes serve? What are the relevant traits that make these prototypes conducive to these functions? To develop a formal questionnaire, preliminary interviews with two startups were conducted. A case study was also conducted of prototyping practices in 2.009 Product Engineering Processes, an undergraduate course at MIT. Following this, secondary interviews were held with members of three additional startups. From a sample of 52 identied prototypes, relationships were found between the material categorizations of prototypes and three key functional roles: test, clarify, and communicate. To further understand the prototyping choices of startups, material categorizations were evaluated with respect to eight core prototype characteristics. Results show that prototypes favored for testing were physically interactive, such as 3D sketches or digitally fabricated models. Inexpensive and easy-to-alter representations (2D sketches, 3D sketches, and CAD) were created to clarify concepts. Visually appealing models (CAD, 2D sketches) were used heavily for both internal and external communication.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Cataloged from student-submitted PDF version of thesis. Includes bibliographical references (page 24).
Date issued
2014Department
Massachusetts Institute of Technology. Department of Mechanical EngineeringPublisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.