Three-dimensional nanofabrication by electron-beam lithography and directed self-assembly
Author(s)
Do, Hyung Wan
DownloadFull printable version (1.464Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Karl K. Berggren.
Terms of use
Metadata
Show full item recordAbstract
In this thesis, we investigated three-dimensional (3D) nanofabrication using electron-beam lithography (EBL), block copolymer (BCP) self-assembly, and capillary force-induced self-assembly. We first developed new processes for fabricating 3D nanostructures using a hydrogen silsesquioxane (HSQ) and poly(methylmeth-acrylate) (PMMA) bilayer resist stack. We demonstrated self-aligned mushroom-shaped posts and freestanding supported structures. Next, we used the 3D nanostructures as topographical templates guiding the self-assembly of polystyrene-b-polydimethylsiloxane (PS-b-PDMS) block copolymer thin films. We observed parallel cylinders, mesh-shaped structures, and bar-shaped structures in PDMS. Finally, we studied capillary force-induced self-assembly of linear nanostructures using a spin drying process. We developed a computation schema based on the pairwise collapse of nanostructures. We achieved propagation of information and built a proof of concept logic gate.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Cataloged from student-submitted PDF version of thesis. Includes bibliographical references.
Date issued
2014Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.