Show simple item record

dc.contributor.advisorKarl K. Berggren.en_US
dc.contributor.authorDo, Hyung Wanen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2015-02-05T15:58:39Z
dc.date.available2015-02-05T15:58:39Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/93778
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractIn this thesis, we investigated three-dimensional (3D) nanofabrication using electron-beam lithography (EBL), block copolymer (BCP) self-assembly, and capillary force-induced self-assembly. We first developed new processes for fabricating 3D nanostructures using a hydrogen silsesquioxane (HSQ) and poly(methylmeth-acrylate) (PMMA) bilayer resist stack. We demonstrated self-aligned mushroom-shaped posts and freestanding supported structures. Next, we used the 3D nanostructures as topographical templates guiding the self-assembly of polystyrene-b-polydimethylsiloxane (PS-b-PDMS) block copolymer thin films. We observed parallel cylinders, mesh-shaped structures, and bar-shaped structures in PDMS. Finally, we studied capillary force-induced self-assembly of linear nanostructures using a spin drying process. We developed a computation schema based on the pairwise collapse of nanostructures. We achieved propagation of information and built a proof of concept logic gate.en_US
dc.description.statementofresponsibilityby Hyung Wan Do.en_US
dc.format.extent69 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleThree-dimensional nanofabrication by electron-beam lithography and directed self-assemblyen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc900731899en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record