MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

LWR fuel reactivity depletion verification using 2D full core MOC and flux map data

Author(s)
Gunow, Geoffrey Alexander
Thumbnail
DownloadFull printable version (12.29Mb)
Alternative title
Light water reactor fuel reactivity depletion verification using two dimensional full core method of characteristics and flux map data
Other Contributors
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering.
Advisor
Kord Smith and Benoit Forget.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Experimental quantification of PWR fuel reactivity burnup decrement biases and uncertainties using in-core flux map data from operating power reactors has previously been conducted employing analytical methods to systematically determine experimental fuel reactivities that best match measured fission rate distributions. This optimal core reactivity distribution that best matches the measured fission rate distribution is assumed to be associated with the true fuel reactivity distribution. Some parties have questioned whether fortuitous cancellation of errors between various approximations inherent in the 3D nodal diffusion core analysis models might have caused reactivity decrement biases and uncertainties to be unrealistically small. In this study, the BEAVRS benchmark is modeled with both 2D, full-core, multi-group transport calculations and 2D and 3D nodal diffusion calculations. The calculated reaction rates are compared with measured in-core detector reaction rates supplied in the benchmark. These models are used in conjunction with analytical methods to obtain fuel reactivity biases and uncertainties. Results demonstrate that fuel batch reactivities inferred from flux map data using full-core transport calculations are nearly identical to those inferred using nodal diffusion calculations. Consequently, nodal methods do not contribute significantly to reactivity decrement biases. Fuel reactivity biases and uncertainties inferred from 3D nodal diffusion calculations remain valid.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 89-90).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/97963
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Nuclear Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.