MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Bachelor's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Bachelor's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Understanding frequency response of a flexural complaint stage for use in oscillatory orthogonal cutting

Author(s)
Barraza, Raul
Thumbnail
DownloadFull printable version (6.211Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Martin L. Culpepper.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Ultramicrotomy is the process of cutting specimens into submicron-thickness slices for subsequent imaging using a scanning electron microscope (SEM). Ultramicrotomes, devices that employ this process, have incorporated oscillations into this process to reduce the damage done on each slice. Extensive research has been made in trying to identify the appropriate settings: frequency, amplitude of cut, and feed speed, to maximize the reduction of this damage. Currently, however, there exists no research that tries to understand why the introduction of oscillations provides such a reduction in damage. To understand the mechanics behind oscillatory orthogonal cutting, specifically in ultramicrotomy, the frequency response of a compliant mechanism must be understood. The frequency response of a complaint flexural stage driven by piezoelectric actuator was measured. Using a Linear Variable Differential Transformer (LVDT) and a dynamic signal analyzer via LabView, the frequency response of the stage was measured from 100Hz to 10000Hz. A model was then fitted to the measured response. Using this model, a comparison between a simulated-reference response of the position of the stage to the output response of the model showed that a controller was required to minimize the error in the position of the stage.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (page 49).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/98952
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Mechanical Engineering - Bachelor's degree
  • Mechanical Engineering - Bachelor's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.