Lean automation strategies for high volume, high complexity, manufacturing systems
Author(s)
Kimball, Peter Evan
DownloadFull printable version (10.15Mb)
Other Contributors
Leaders for Global Operations Program.
Advisor
David Hardt and Thomas Roemer.
Terms of use
Metadata
Show full item recordAbstract
This thesis and the associated project explore lean automation strategies for high volume, high complexity manufacturing systems. In particular, we study how to reduce the footprint and cost of an automotive sealing line, while maintaining current levels of production, maintainability and safety. The key challenge researched in this thesis concerns how to reduce space requirements and cost of a highly automated facility without sacrificing system maintainability, safety or throughput. For this study, any solution must utilize currently available technology. The thesis will review the basic research, concept development, layout development and solution refinement activities that lead to a final concept and recommendation. The key findings for this study include three strategies that led to a lower cost footprint that consumed less space. These strategies are: " Intelligent reduction of conveyance systems "Increased system flexibility" Increased automation density Additionally the study highlights how these strategies complement each other when addressing cost and space reduction challenges. In this particular study the three strategies yielded space savings of approximately 33% and capital cost savings of about 10%.
Description
Thesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, 2015. In conjunction with the Leaders for Global Operations Program at MIT. Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015. In conjunction with the Leaders for Global Operations Program at MIT. Cataloged from PDF version of thesis. Includes bibliographical references (pages 84-85).
Date issued
2015Department
Leaders for Global Operations Program at MIT; Massachusetts Institute of Technology. Department of Mechanical Engineering; Sloan School of ManagementPublisher
Massachusetts Institute of Technology
Keywords
Sloan School of Management., Mechanical Engineering., Leaders for Global Operations Program.