MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Protein engineering design principles for the development of biosensors

Author(s)
De Picciotto, Seymour
Thumbnail
DownloadFull printable version (11.32Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Biological Engineering.
Advisor
K. Dane Wittrup and Linda G. Griffith.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Investigating protein location and concentration is critical to understanding function. Reagentless biosensors, in which a reporting fluorophore is conjugated to a binding scaffold, can detect analytes of interest with high temporal and spatial resolution. However, because these biosensors require laborious empirical screening to develop, their adoption has been limited. Hence, we establish design principles that will facilitate development. In this thesis, we first develop a kinetic model for the dynamic performance of a reagentless biosensor. Using a sinusoidal signal for ligand concentration, our findings suggest that it is optimal to use a binding moiety whose equilibrium dissociation constant matches that of the average predicted input signal, while maximizing both the association rate constant and the dissociation rate constant at the necessary ratio to create the desired equilibrium constant. Although practical limitations constrain the attainment of these objectives, the derivation of these design principles provides guidance for improved reagentless biosensor performance and metrics for quality standards in the development of biosensors. Following these guidelines, we use the human tenth type III fibronectin domain to engineer new binders against several ligands of the EGFR receptor. Using these binders and others, we design and characterize biosensors based on various target analytes, scaffolds and fluorophores. We observe that analytes can harbor specific binding pockets for the fluorophore, which sharply increase the fluorescence produced upon binding. Furthermore, we demonstrate that a fluorophore conjugated to locally rigid surfaces possesses lower background fluorescence. Based on these newly identified properties, we design biosensors that produce a 100-fold increase in fluorescence upon binding to analyte, about a 10-fold improvement over the previous best biosensor. In order to improve the methodology of reagentless biosensor design, we establish a method for site-specific labeling of proteins displayed on the surface of yeasts. This procedure allows for the screening of libraries of sensors for binding and fluorescence enhancement simultaneously. Finally, we explore an alternative sensor design, based on competitive inhibition of fluorescence quenching.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Biological Engineering, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/99053
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Biological Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.