MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unstable chromatic homotopy theory

Author(s)
Wang, Guozhen, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (2.589Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Mark Behrens and Haynes Miller.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, I study unstable homotopy theory with chromatic methods. Using the v, self maps provided by the Hopkins-Smith periodicity theorem, we can decompose the unstable homotopy groups of a space into its periodic parts, except some lower stems. For fixed n, using the Bousfield-Kuhn functor [Phi]n, we can associate to any space a spectrum, which captures the vo-periodic part of its homotopy groups. I study the homotopy type of the spectra LK(n)[Phi]nfSk, which would tell us much about the vn-periodic part of the homotopy groups of spheres provided we have a good understanding of the telescope conjecture. I make use the Goodwillie tower of the identity functor, which resolves the unstable spheres into spectra which are the Steinberg summands of classifying spaces of the additive groups of vector spaces over F,. By understanding the attaching maps of the Goodwillie tower after applying the Bousfield-Kuhn functor, we would be able to determine the homotopy type of LK(n)[Phi]nSk. As an example of how this works in concrete computations, I will compute the homotopy groups of LK(2)[Phi]nS3 at primes p >/= 5. The computations show that the unstable homotopy groups not only have finite p-torsion, their K(2)-local parts also have finite vo-torsion, which indicates there might be a more general finite v-torsion phenomena in the unstable world.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 57-58).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/99321
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.