Show simple item record

dc.contributor.advisorMark Behrens and Haynes Miller.en_US
dc.contributor.authorWang, Guozhen, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mathematics.en_US
dc.date.accessioned2015-10-14T15:05:37Z
dc.date.available2015-10-14T15:05:37Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/99321
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 57-58).en_US
dc.description.abstractIn this thesis, I study unstable homotopy theory with chromatic methods. Using the v, self maps provided by the Hopkins-Smith periodicity theorem, we can decompose the unstable homotopy groups of a space into its periodic parts, except some lower stems. For fixed n, using the Bousfield-Kuhn functor [Phi]n, we can associate to any space a spectrum, which captures the vo-periodic part of its homotopy groups. I study the homotopy type of the spectra LK(n)[Phi]nfSk, which would tell us much about the vn-periodic part of the homotopy groups of spheres provided we have a good understanding of the telescope conjecture. I make use the Goodwillie tower of the identity functor, which resolves the unstable spheres into spectra which are the Steinberg summands of classifying spaces of the additive groups of vector spaces over F,. By understanding the attaching maps of the Goodwillie tower after applying the Bousfield-Kuhn functor, we would be able to determine the homotopy type of LK(n)[Phi]nSk. As an example of how this works in concrete computations, I will compute the homotopy groups of LK(2)[Phi]nS3 at primes p >/= 5. The computations show that the unstable homotopy groups not only have finite p-torsion, their K(2)-local parts also have finite vo-torsion, which indicates there might be a more general finite v-torsion phenomena in the unstable world.en_US
dc.description.statementofresponsibilityby Guozhen Wang.en_US
dc.format.extent58 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMathematics.en_US
dc.titleUnstable chromatic homotopy theoryen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.oclc923219829en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record