Show simple item record

dc.contributor.advisorDavid K. Gifford.en_US
dc.contributor.authorZeng, Haoyang, Ph.D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2015-11-09T19:51:33Z
dc.date.available2015-11-09T19:51:33Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/99829
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 41-44).en_US
dc.description.abstractWith the advent of high-throughput sequencing technology, Genome Wide Association Studies (GWAS) have identified thousands of genetic variants that are associated with disease and complex traits. Many of these variants reside in the non-coding region of the genome, and affect gene expression and downstream cellular phenotype by disrupting the regulatory machinery of the cell. For example these variants can alter the binding of the transcription factors (TF). In this thesis we present Whole-genome regulAtory Variant Evaluation (WAVE), a computational method that models the TF binding ChIP-seq signal solely from DNA sequence and predicts genetic a variant's effect on TF binding. Applying WAVE to two important transcription factors, NFnB and CTCF, we show that WAVE accurately predicts ChIP-seq signal on held-out chromosome. WAVE discovers the DNA motif of the target TF as well as the binding co-factors, displaying substantially greater expressiveness in modeling TF binding than conventional motif-based approaches. Furthermore, with AUC larger than 0.7 in the most stringent control scenario, WAVE outperformed existing motif-based approaches in predicting genetic variants associated with allele-specific binding.en_US
dc.description.statementofresponsibilityby Haoyang Zeng.en_US
dc.format.extent44 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleWhole genome regulatory variant evaluation for transcription factor bindingen_US
dc.title.alternativeWhole genome WAVE for TF bindingen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc927347507en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record