Lec # | Topics | Readings |
---|---|---|
1 | 1. Introduction 2. Classical Molasses and Beam Slowing 2.1. The Spontaneous Light Force 2.2. 1D Optical Molasses 2.3. The Doppler Cooling Limit 2.4. Beam Slowing |
Phillips, W. D. "Laser Cooling and Trapping of Neutral Atoms." In Laser Manipulation of Atoms and Ions. Edited by E. Arimondo, W. D. Phillips, and F. Strumia. Proceedings of the International School of Physics "Enrico Fermi", Course CXVIII. Amsterdam: North-Holland, 1992, pp. 289-304. (The second part on atom traps was covered later in the course). Alternatively see this (PDF - 4.9 MB) Three-Dimensional Viscous Confinement and Cooling of Atoms by Resonance Radiation Pressure One-page note on Chirped Slowing (PDF) Phillips, W. D., J. V. Prodan, and H. J. Metcalf. "Laser Cooling and Electromagnetic Trapping of Neutral Atoms." J. Opt. Soc. Am. B 2, no. 1761 (1985). Lett, P. D., W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook. "Optical Molasses." J. Opt. Soc. Am. B 6, no. 2084 (1989). Ertmer, W., R. Blatt, J. L. Hall, and M. Zhu. "Laser Manipulation of Atomic Beam Velocities: Demonstration of Stopped Atoms and Velocity Reversal." Phys. Rev. Lett. 54, no. 996 (1985). Ketterle, W., A. Martin, M. A. Joffe, and D. E. Pritchard. "Slowing and Cooling Atoms in Isotropic Laser Light." Phys. Rev. Lett. 69, no. 2483 (1992). Barrett, T. E., S. W. Dapore-Schwartz, M. D. Ray, and G. P. Lafyatis. "Slowing Atoms with (Sigma-minus) Polarized Light." Phys. Rev. Lett. 67, no. 3483 (1991). |
2 | 2.5. Energy vs. Momentum Picture 2.6. 3D Molasses and Higher Intensity 2.7. Momentum and Spatial Diffusion | |
3 | 3. The QED Hamiltonian |
Viewgraphs used in class (PDF) Weissbluth, Mitchel. Photon Atom Interactions. Boston, MA: Academic Press Inc., 1989. ISBN: 978-0127436609.
I would recommend consulting this book whenever you want to know more about the "exact" formulation of the theory. I am always amazed how easily you can open this book in the middle and still understand the explanations. |
4 | 4. Properties of Light 4.1. The Quantized Radiation Field 4.1.1. Thermal States (Chaotic Light) 4.1.2. Coherent States; Q(Alpha) Representation 4.1.3. Fluctuations, Noise, and Second Order Coherence 4.1.4. Single Photon States and the Hanbury-Brown Twiss Experiment |
Enhanced Single-photon Emission from a Quantum Dot in a Micropost Microcavity ( |
5 | 4.2. Squeezed States of Light 4.2.1. The Displacement and Squeeze Operators 4.2.2. Generation of Squeezed States, Classical Squeezing 4.2.3. Homodyne Detection 4.2.4. Teleportation |
Kimble, H. J. "Quantum Fluctuations in Quantum Optics" in Fundamental Systems in Quantum Optics, Edited by J. Dalibard, J. M. Raimond, and J. Zinn-Justin. Proceeding of the Summer School in Les Houches, Session LIII, 1990. Elsevier, 1992. Extensive and Advanced Treatment of Squeezed Light. Henry, R. W., and S. C. Glotzer. "A Squeezed-state Primer." Am. J. Phys. 56, no. 318 (1988). Basic discussion using only elementary quantum mechanics. Teich, M. C., and B. E. A. Saleh. "Squeezed and AntiBunched Light." Physics Today, June 1990. Popular article on non-classical light. One page, lecture notes by Dave Pritchard (PDF) (Courtesy of Dave Pritchard. Used with permission.) DiFilippo, F., et al. "Classical Amplitude Squeezing for Precision Measurements." PRL 68, no. 2859 (1992). Furusawa, A., et al. "Unconditional Quantum Teleportation." Science 282, no. 706 (1998). |
6 | 4.2.5. Beam Splitter and Homodyne Detection 4.2.6. Experiments with Squeezed Light |
Three pages lecture notes by W. K. (PDF) Schumaker, B. L. "Noise in Homodyne Detection." Optics Letters 9, no. 189 (1984). Wu, Ling-An, H. J. Kimble, J. L. Hall, and H. Wu. "Generation of Squeezed States by Parametric Down Conversion." PRL 57, no. 2520 (1986). Xiao, Min, Ling-An Wu, and H. J. Kimble. "Precision Measurement beyond the Shot-Noise Limit." PRL 59, no. 279 (1987). Polzik, E. S., J. Carri, and H. J. Kimble. "Spectroscopy with Squeezed Light." PRL 68, no. 3020 (1992). |
7 | 4.3. Interferometry and Entanglement 4.3.1. Gravitational Wave Detection 4.3.2. Heisenberg Limited Interferometry |
Caves, C. M. "Quantum-mechanical Noise in an Interferometer." Phys. Rev. D 23 (1981): 1693-1708. Giovannetti, Vittorio, Seth Lloyd, and Lorenzo Maccone. "Quantum-Enhanced Measurements: Beating the Standard Quantum Limit." Preprint quant-ph/0412078. Proposal for Atom Interferometry: Creation of Correlated States with Bose-Einstein Condensates: |
8 | 4.3.3. Entanglement |
Sackett, C. A., D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe. "Experimental Entanglement of Four Particles." Nature 404, no. 256 (2000).
|
9 | 5. Basic Aspects of the Interaction between Light and Atoms | |
10 | 5.1. Transition Amplitudes and Diagrams 5.2. Some Interaction Processes between Photons and Atoms 5.2.1. Emission 5.2.2. Absorption 5.2.3. Scattering 5.3. Resonant Scattering and Radiative Corrections |
Extra topic: Hanbury-Brown and Twiss Experiment and the g2 Function: Yasuda, Masami, and Fujio Shimizu. "Observation of Two-Atom Correlation of an Ultracold Neon Atomic Beam." Physical Review Letters 77, no. 15 (1996). PRL on HBT experiment with cold atoms. Dalibard, J., J. Dupont-Roc, and Claude Cohen-Tannoudji. "Vacuum Fluctuations and Radiation Reaction: Identification of Their Respective Contributions." J. Physique 43 (1982): 1617-1638. |
11 | 5.4. Interaction by Photon Exchange and Collisions 5.4.1. Van der Waals Interaction |
Spruch, L. "Retarded, or Casimir, Long-range Potentials." Physics Today paper (Nov 1986): 37. |
12 | 5.4.2. Casimir Interactions 5.4.3. Langevin Model for Inelastic Collisions |
Course notes (WK) (PDF) Haroche, S. "Cavity Quantum Electrodynamics" in Fundamental Systems in Quantum Optics, Edited by J. Dalibard, J. M. Raimond, and J. Zinn-Justin. Proceeding of the Summer School in Les Houches, Session LIII, 1990. Elsevier, 1992. Four pages course notes on Inelastic and Elastic Collisions (WK) (PDF) |
13 | 5.4.4. Elastic Collisions between Cold Atoms 5.4.5. s-wave Scattering 6. Master Equation |
Metcalf, Harold. "Peter Van Der Straten, Cooling and Tapping of Neutral Atoms." Physics Reports 244, no. 203 (1994). Chuang, Isaac. The Master Equation (PDF)
|
14 | 7. Optical Bloch Equations 7.1. Derivation 7.2. Rotating-wave Approximation |
![]() |
15 | 7.3. Adiabatic Elimination of Coherences 7.4. Steady-state Solution 7.5. Spectrum of Emitted Light | |
16 | 7.6. Mean Radiation Forces 7.6.1. Radiation Pressure Force 7.6.2. Reactive Force 7.7. Moving Atoms, Friction Force |
Cohen-Tannoudji, C. Fundamental Systems in Quantum Optics, pp. 34-35. Edited by J. Dalibard, J. M. Raimond, and J. Zinn-Justin. Proceeding of the Summer School in Les Houches, Session LIII, 1990. Elsevier, 1992. Gordon, J. P., and A. Ashkin, PRA 21, no. 1606 (1980). |
17 | 7.8. Diffusion in a Standing Wave 7.9. Experiments on the Stimulated Light Force 8. The Dressed Atom Approach 8.1. Derivation of the Energy Levels of the Dressed Atom |
Cohen-Tannoudji, Claude, Fundamental Systems in Quantum Optics, pp. 46-53. Edited by J. Dalibard, J. M. Raimond, and J. Zinn-Justin. Proceeding of the Summer School in Les Houches, Session LIII, 1990. Elsevier, 1992. Gordon, J. P., and A. Ashkin, PRA 21, no. 1606 (1980). Cooling Atoms with Stimulated Emission: Channeling Atoms: Localization of Atoms: Motion of Wave Packets in Optical Lattices: First Optical Trap: Far-off-resonance Trap:
|
18 | 8.2. Resonance Fluorescence in the Dressed Atom Picture 8.3. Dipole Forces within the Dressed Atom Picture 8.3.1. Mean Dipole Force for an Atom at Rest 8.3.2. Mean Dipole Force for a Slowly Moving Atom 8.3.3. Energy Balance in a Small Displacement |
Lecture notes (PDF) Dalibard, J., and Claude Cohen-Tannoudji. "Dressed-atom Approach to Atomic Motion in Laser Light: The Dipole Force Revisited." J. Opt. Soc. Am. B 2, no. 1707 (1985). |
19 | 8.3.4. Momentum Diffusion due to Dipole Force Fluctuations 8.3.5. Atoms Moving in a Standing Wave 8.3.6. Cooling in a Standing Wave 9. Spontaneous Light Force Traps |
Magneto-optical Trap, Optical Earnshaw Theorem: Phillips, W. D. "Laser Cooling and Trapping of Neutral Atoms." In Laser Manipulation of Atoms and Ions. Edited by E. Arimondo, W. D. Phillips, and F. Strumia. Proceedings of the International School of Physics "Enrico Fermi", Course CXVIII. Amsterdam: North-Holland, 1992. Optical Earnshaw Theorem (OET): How to Circumvent the OET: Realization of the MOT: |
20 | 10. Quantum Monte Carlo Wavefunction Method 10.1. Basic Concepts 10.2. MCWF Procedure | Dalibard, J., Y. Castin, and K. Molmer. "Wave-Function Approach to Dissipative Processes in Quantum Optics." Phys. Rev. Lett. 68, no. 580 (1992). |
21 | 10.3. Proof of Equivalence to the Optical Bloch Equations 11. Models of Decoherence 11.1. Decoherence - Definition and Perspective 11.2. Three Models of Phase Damping 11.2.1. Random Phase Noise 11.2.2. Elastic Collisions 11.2.3. Random Phase Flips 11.3. Jaynes-Cummings Collapses and Revivals | Lecture notes Models of Decoherence (PDF) |
22 | 12. Ion Traps 12.1. Hamiltonians and Cooling 12.1.1. The Ion Trap Physical System 12.1.2. The Hamiltonian 12.1.3. Sideband Cooling - Process and Limits 12.1.4. Experimental Observations of Sideband Cooling |
Blatt, "Lecture notes on Ion Trapping" in Fundamental Systems in Quantum Optics, Edited by J. Dalibard, J. M. Raimond, and J. Zinn-Justin. Proceeding of the Summer School in Les Houches, Session LIII, 1990. Elsevier, 1992. Sideband Cooling: Laser Cooling of Ions: |
23 | 12.2. Quantum Control of Single Ions 12.2.1. The Challenge of Quantum State Preparation 12.2.2. Review of Unusual States 12.2.3. Motional State Control in Ion Traps 12.2.4. Motional Fock, Coherent, and Schroedinger Cat States 12.2.5. Recipe for Arbitrary Motional States | Leibfried, D., R. Blatt, C. Monroe, and D. Wineland. "Quantum Dynamics of Single Trapped Ions." Review of Modern Physics 75 (January 2003): 281-324. |
24 | 12.3. Quantum Computation with Trapped Ions 12.3.1. Quantum Gates and Circuits 12.3.2. The Cirac-Zoller CNOT 12.3.3. Geometric Phase Gate |
Three original papers on Quantum Gates: Monroe, C., D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland. "Demonstration of a Fundamental Quantum Logic Gate." Phys. Rev. Lett. 75, no. 25 (Dec 18, 1995): 4714-4717. Schmidt-Kaler, Ferdinand, Hartmut Häffner, Mark Riebe, Stephan Gulde, Gavin P. T. Lancaster, Thomas Deuschle, Christoph Becher, Christian F. Roos, Jürgen Eschner, and Rainer Blatt. "Realization of the Cirac-Zoller Controlled-NOT Quantum Gate." Nature 422 (March 27, 2003): 408-411. Leibfried, D., B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland. "Experimental Demonstration of a Robust, High-fidelity Geometric Two Ion-qubit Phase Gate." Nature 422 (March 27, 2003): 412-415. |
25 | 13. Magnetic Traps and Evaporative Cooling 13.1. Stability, Majorana Flops, Magnetic Levitation 13.2. Wing's Theorem 13.3. Magnetic Trap Configurations | W. K., D. S. Durfee, and D. M. Stamper-Kurn. Varenna Lecture Notes, 1999, pp. 80-89. |
26 | 13.4. Evaporative Cooling 14. Bose-Einstein Condensation 14.1. Homogeneous Interacting Bose Gas, Bogoliubov Solution 14.2. Elementary Excitations |
Ketterle, W., and N. J. van Druten. "Evaporative Cooling of Trapped Atoms." Adv. At. Mol. Opt. Phys. 37 (1986): 181-236. Relevant pages: pp. 181-193.
|
27 | 14.3. Inhomogeneous Bose Gas, Nonlinear Schrödinger Equation 14.4. The Thomas-Fermi Approximation 14.5. Hydrodynamic Flow of a Superfluid |
![]() |