MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

0.3V biopotential sensor interface for stress monitoring

Author(s)
Orguc, Sirma
Thumbnail
DownloadFull printable version (10.84Mb)
Alternative title
Zero point three volt biopotential sensor interface for stress monitoring
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Anantha P. Chandrakasan.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Miniaturized sensor nodes have a very tight power budget, especially in the case of implantables and health monitoring devices that require long operation lifetime. Exploiting low-voltage techniques in analog design can enable further power savings, which has not been explored much. However, for conventional analog-front-end (AFE) topologies, voltage scaling could potentially bring several limitations to the important performance metrics such as the linearity, robustness and the power-efficiency. This thesis work describes the design of a 0.3V biopotential sensor interface for stress monitoring applications, which achieves state-of-the-art power-efficiency, and ensures enough circuit reliability with reduced dynamic range requirement. The proposed sensor interface consists of an amplifier and an analog-to-digital converter (ADC). The simulated amplifier achieves 0.95nW power consumption with a power-efficiency-factor (PEF) of 1.57. With this power budget, the amplifier also presents large signal cancellation capability in order to reject the motion artifacts. The system, together with the ADC consumes 4.1nW power, and has an area of 0.2mm2 which makes the sensor interface suitable for wearable and implantable devices. The chip has been submitted for fabrication in a low power 65nm digital CMOS process, and the simulation results are presented.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 109-112).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/106085
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.