Show simple item record

dc.contributor.advisorSaman Amarasinghe
dc.contributor.authorKjolstad, Fredriken_US
dc.contributor.authorKamil, Shoaiben_US
dc.contributor.authorChou, Stephenen_US
dc.contributor.authorLugato, Daviden_US
dc.contributor.authorAmarasinghe, Samanen_US
dc.contributor.otherComputer Architectureen
dc.date.accessioned2017-02-21T22:00:07Z
dc.date.available2017-02-21T22:00:07Z
dc.date.issued2017-02-17
dc.identifier.urihttp://hdl.handle.net/1721.1/107013
dc.description.abstractTensor and linear algebra is pervasive in data analytics and the physical sciences. Often the tensors, matrices or even vectors are sparse. Computing expressions involving a mix of sparse and dense tensors, matrices and vectors requires writing kernels for every operation and combination of formats of interest. The number of possibilities is infinite, which makes it impossible to write library code for all. This problem cries out for a compiler approach. This paper presents a new technique that compiles compound tensor algebra expressions combined with descriptions of tensor formats into efficient loops. The technique is evaluated in a prototype compiler called taco, demonstrating competitive performance to best-in-class hand-written codes for tensor and matrix operations.en_US
dc.format.extent14 p.en_US
dc.relation.ispartofseriesMIT-CSAIL-TR-2017-003
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectTensor Algebraen_US
dc.subjectLinear Algebraen_US
dc.subjectCompileren_US
dc.subjectC++ Libraryen_US
dc.titleThe Tensor Algebra Compileren_US
dc.date.updated2017-02-21T22:00:07Z


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record