MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A deep learning approach to state estimation from videos

Author(s)
Doshi, Chandani
Thumbnail
DownloadFull printable version (9.923Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Rebecca L. Russell and Leslie P. Kaelbling.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Kalman lters have been commonly used for estimating the state of a vehicle from a video. Multi-State Constraint Kalman Filter (MSCKF) is an EKF-based state estimator that uses feature measurements for pose estimation of a vehicle. These models require a lot of hands-on engineering time to dene the measurement functions. We propose a data-driven approach by training deep neural networks on high-dimensional navigation image data generated from a simulation. We describe a CNN model that robustly learns reliable features from the input and gives promising results to model temporal data. We show that a deep learning approach can be a replacement for the MSCKF model for estimating the velocity of a moving vehicle.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 45-47).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/119761
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.