dc.contributor.advisor | Rebecca L. Russell and Leslie P. Kaelbling. | en_US |
dc.contributor.author | Doshi, Chandani | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2018-12-18T19:48:55Z | |
dc.date.available | 2018-12-18T19:48:55Z | |
dc.date.copyright | 2018 | en_US |
dc.date.issued | 2018 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/119761 | |
dc.description | Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018. | en_US |
dc.description | This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. | en_US |
dc.description | Cataloged from student-submitted PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 45-47). | en_US |
dc.description.abstract | Kalman lters have been commonly used for estimating the state of a vehicle from a video. Multi-State Constraint Kalman Filter (MSCKF) is an EKF-based state estimator that uses feature measurements for pose estimation of a vehicle. These models require a lot of hands-on engineering time to dene the measurement functions. We propose a data-driven approach by training deep neural networks on high-dimensional navigation image data generated from a simulation. We describe a CNN model that robustly learns reliable features from the input and gives promising results to model temporal data. We show that a deep learning approach can be a replacement for the MSCKF model for estimating the velocity of a moving vehicle. | en_US |
dc.description.statementofresponsibility | by Chandani Doshi. | en_US |
dc.format.extent | 47 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | A deep learning approach to state estimation from videos | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M. Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 1078782966 | en_US |