Show simple item record

dc.contributor.authorHajiaghayi, MohammadTaghi
dc.contributor.authorLeighton, F. Thomson
dc.contributor.otherTheory of Computation
dc.date.accessioned2005-12-12T23:22:48Z
dc.date.available2005-12-12T23:22:48Z
dc.date.issued2003-07-05
dc.identifier.otherMIT-CSAIL-TR-2003-002
dc.identifier.otherMIT-LCS-TR-910
dc.identifier.urihttp://hdl.handle.net/1721.1/29829
dc.description.abstractWe give a pure combinatorial problem whose solution determines max-flow min-cut ratio for directed multicommodity flows. In addition, this combinatorial problem has applications in improving the approximation factor of Greedy algorithm for maximum edge disjoint path problem. More precisely, our upper bound improves the approximation factor for this problem to O(n^{3/4}). Finally, we demonstrate how even for very simple graphs the aforementioned ratio might be very large.
dc.format.extent5 p.
dc.format.extent7867417 bytes
dc.format.extent389570 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesMassachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory
dc.titleOn the Max-Flow Min-Cut Ratio for Directed Multicommodity Flows


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record