Show simple item record

dc.contributor.authorMorgenstern, Christian
dc.contributor.authorHeisele, Bernd
dc.date.accessioned2005-12-22T01:15:11Z
dc.date.available2005-12-22T01:15:11Z
dc.date.issued2003-11-28
dc.identifier.otherMIT-CSAIL-TR-2003-031
dc.identifier.otherAIM-2003-024
dc.identifier.otherCBCL-232
dc.identifier.urihttp://hdl.handle.net/1721.1/30436
dc.description.abstractWe present a component-based approach for recognizing objectsunder large pose changes. From a set of training images of a givenobject we extract a large number of components which are clusteredbased on the similarity of their image features and their locations withinthe object image. The cluster centers build an initial set of componenttemplates from which we select a subset for the final recognizer.In experiments we evaluate different sizes and types of components andthree standard techniques for component selection. The component classifiersare finally compared to global classifiers on a database of fourobjects.
dc.format.extent12 p.
dc.format.extent20676042 bytes
dc.format.extent965767 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesMassachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory
dc.subjectAI
dc.subjectcomputer vision
dc.subjectobject recognition
dc.subjectcomponent object recognition
dc.titleComponent based recognition of objects in an office environment


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record