MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Discovering Latent Classes in Relational Data

Author(s)
Kemp, Charles; Griffiths, Thomas L.; Tenenbaum, Joshua B.
Thumbnail
DownloadMIT-CSAIL-TR-2004-050.ps (13068Kb)
Additional downloads
Metadata
Show full item record
Abstract
We present a framework for learning abstract relational knowledge with the aimof explaining how people acquire intuitive theories of physical, biological, orsocial systems. Our approach is based on a generative relational model withlatent classes, and simultaneously determines the kinds of entities that existin a domain, the number of these latent classes, and the relations betweenclasses that are possible or likely. This model goes beyond previouspsychological models of category learning, which consider attributesassociated with individual categories but not relationships between categories.We apply this domain-general framework to two specific problems: learning thestructure of kinship systems and learning causal theories.
Date issued
2004-07-22
URI
http://hdl.handle.net/1721.1/30489
Other identifiers
MIT-CSAIL-TR-2004-050
AIM-2004-019
Series/Report no.
Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory
Keywords
AI, learning, categorization, relations, kinship

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.