MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

[RNA polymerase ribozymes]

Author(s)
Lawrence, Michael S. (Michael Scott), 1975-
Thumbnail
DownloadFull printable version (65.16Mb)
Alternative title
Ribonucleic acid polymerase ribozymes
Other Contributors
Massachusetts Institute of Technology. Dept. of Biology.
Advisor
David P. Bartel.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/31193 http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The RNA World is a hypothetical ancient evolutionary era during which RNA was both genome and catalyst. During that time, RNA was the only kind of enzyme yet in existence, and one of its chief duties was the replication of RNA. This scenario presupposes that among all possible RNA sequences, there exist RNA replicase ribozymes, capable of synthesizing RNA using the information in an RNA template. The goal of the present work is to provide experimental evidence in support of this conjecture, by isolating such ribozymes in the laboratory. We created a large pool of RNA molecules each containing a previously isolated RNA ligase ribozyme and a large stretch of random RNA. Applying in vitro evolution to select for molecules that could extend a tethered RNA primer using nucleoside triphosphates, we isolated nine distinct classes of polymerase ribozymes. Two of these rudimentary polymerases were further evolved to the point that they each could add 14 nucleotides to an untethered primer-template. One of them was subjected to a detailed further characterization. The polymerization it catalyzes was shown to be accurate, with an average fidelity of nearly 97%. It was shown to be general, with primer-templates of all sequences and lengths being accepted as substrates. Finally, it was shown to be partially processive, with the polymerase achieving processivity as high as 90% in a few instances. The polymerase is currently limited by its low affinity for the primer-template. Future work will focus on improving primer- template binding, in order to produce a polymerase that can synthesize longer RNA.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2005.
 
Title supplied by cataloger from abstract.
 
Includes bibliographical references.
 
Date issued
2005
URI
http://dspace.mit.edu/handle/1721.1/31193
http://hdl.handle.net/1721.1/31193
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Biology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.