dc.contributor.author | Bennett, Herman | en_US |
dc.coverage.temporal | Fall 2004 | en_US |
dc.date.issued | 2004-12 | |
dc.identifier | 14.30-Fall2004 | |
dc.identifier | local: 14.30 | |
dc.identifier | local: IMSCP-MD5-6cb89d04e96d060cf5a88c4cd17ece76 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/35270 | |
dc.description.abstract | This course is a self-contained introduction to statistics with economic applications. Elements of probability theory, sampling theory, statistical estimation, regression analysis, and hypothesis testing. It uses elementary econometrics and other applications of statistical tools to economic data. It also provides a solid foundation in probability and statistics for economists and other social scientists. We will emphasize topics needed in the further study of econometrics and provide basic preparation for 14.32. No prior preparation in probability and statistics is required, but familiarity with basic algebra and calculus is assumed. | en_US |
dc.format.extent | 14890 bytes | en_US |
dc.format.extent | 16537 bytes | en_US |
dc.format.extent | 15239 bytes | en_US |
dc.format.extent | 17604 bytes | en_US |
dc.format.extent | 17127 bytes | en_US |
dc.format.extent | 16730 bytes | en_US |
dc.format.extent | 15729 bytes | en_US |
dc.format.extent | 14030 bytes | en_US |
dc.format.extent | 14621 bytes | en_US |
dc.format.extent | 16808 bytes | en_US |
dc.format.extent | 11 bytes | en_US |
dc.format.extent | 4586 bytes | en_US |
dc.format.extent | 21366 bytes | en_US |
dc.format.extent | 11602 bytes | en_US |
dc.format.extent | 38351 bytes | en_US |
dc.format.extent | 4755 bytes | en_US |
dc.format.extent | 27322 bytes | en_US |
dc.format.extent | 25313 bytes | en_US |
dc.format.extent | 4039 bytes | en_US |
dc.format.extent | 301 bytes | en_US |
dc.format.extent | 354 bytes | en_US |
dc.format.extent | 339 bytes | en_US |
dc.format.extent | 180 bytes | en_US |
dc.format.extent | 285 bytes | en_US |
dc.format.extent | 67 bytes | en_US |
dc.format.extent | 17685 bytes | en_US |
dc.format.extent | 49 bytes | en_US |
dc.format.extent | 143 bytes | en_US |
dc.format.extent | 247 bytes | en_US |
dc.format.extent | 19283 bytes | en_US |
dc.format.extent | 262 bytes | en_US |
dc.format.extent | 21686 bytes | en_US |
dc.format.extent | 183076 bytes | en_US |
dc.format.extent | 153267 bytes | en_US |
dc.format.extent | 44606 bytes | en_US |
dc.format.extent | 143521 bytes | en_US |
dc.format.extent | 154381 bytes | en_US |
dc.format.extent | 165461 bytes | en_US |
dc.format.extent | 129891 bytes | en_US |
dc.format.extent | 176372 bytes | en_US |
dc.format.extent | 64981 bytes | en_US |
dc.format.extent | 166090 bytes | en_US |
dc.format.extent | 185156 bytes | en_US |
dc.format.extent | 137825 bytes | en_US |
dc.format.extent | 214987 bytes | en_US |
dc.format.extent | 20021 bytes | en_US |
dc.format.extent | 116198 bytes | en_US |
dc.format.extent | 89933 bytes | en_US |
dc.format.extent | 122874 bytes | en_US |
dc.format.extent | 90728 bytes | en_US |
dc.format.extent | 121566 bytes | en_US |
dc.format.extent | 84918 bytes | en_US |
dc.format.extent | 180149 bytes | en_US |
dc.format.extent | 78848 bytes | en_US |
dc.format.extent | 131453 bytes | en_US |
dc.format.extent | 63231 bytes | en_US |
dc.format.extent | 97708 bytes | en_US |
dc.format.extent | 79957 bytes | en_US |
dc.format.extent | 123078 bytes | en_US |
dc.format.extent | 65295 bytes | en_US |
dc.format.extent | 100265 bytes | en_US |
dc.format.extent | 38911 bytes | en_US |
dc.format.extent | 122368 bytes | en_US |
dc.format.extent | 73691 bytes | en_US |
dc.format.extent | 90985 bytes | en_US |
dc.format.extent | 81153 bytes | en_US |
dc.format.extent | 99345 bytes | en_US |
dc.format.extent | 81491 bytes | en_US |
dc.format.extent | 105874 bytes | en_US |
dc.format.extent | 101161 bytes | en_US |
dc.format.extent | 87879 bytes | en_US |
dc.format.extent | 103676 bytes | en_US |
dc.format.extent | 87141 bytes | en_US |
dc.format.extent | 117989 bytes | en_US |
dc.format.extent | 109653 bytes | en_US |
dc.format.extent | 19283 bytes | en_US |
dc.format.extent | 3486 bytes | en_US |
dc.format.extent | 811 bytes | en_US |
dc.format.extent | 813 bytes | en_US |
dc.format.extent | 830 bytes | en_US |
dc.format.extent | 445 bytes | en_US |
dc.format.extent | 2097 bytes | en_US |
dc.format.extent | 42308 bytes | en_US |
dc.format.extent | 7989 bytes | en_US |
dc.format.extent | 8048 bytes | en_US |
dc.format.extent | 8406 bytes | en_US |
dc.format.extent | 7453 bytes | en_US |
dc.format.extent | 8016 bytes | en_US |
dc.format.extent | 8384 bytes | en_US |
dc.format.extent | 7989 bytes | en_US |
dc.format.extent | 8000 bytes | en_US |
dc.format.extent | 8390 bytes | en_US |
dc.format.extent | 7435 bytes | en_US |
dc.format.extent | 7989 bytes | en_US |
dc.format.extent | 7989 bytes | en_US |
dc.format.extent | 8066 bytes | en_US |
dc.format.extent | 8512 bytes | en_US |
dc.format.extent | 8329 bytes | en_US |
dc.format.extent | 9031 bytes | en_US |
dc.format.extent | 8179 bytes | en_US |
dc.format.extent | 7477 bytes | en_US |
dc.format.extent | 7462 bytes | en_US |
dc.format.extent | 8078 bytes | en_US |
dc.format.extent | 8001 bytes | en_US |
dc.format.extent | 10963 bytes | en_US |
dc.format.extent | 7610 bytes | en_US |
dc.format.extent | 8384 bytes | en_US |
dc.format.extent | 7989 bytes | en_US |
dc.format.extent | 8001 bytes | en_US |
dc.format.extent | 7460 bytes | en_US |
dc.format.extent | 8386 bytes | en_US |
dc.format.extent | 8392 bytes | en_US |
dc.format.extent | 8407 bytes | en_US |
dc.format.extent | 8384 bytes | en_US |
dc.format.extent | 7453 bytes | en_US |
dc.format.extent | 8001 bytes | en_US |
dc.format.extent | 8390 bytes | en_US |
dc.format.extent | 8380 bytes | en_US |
dc.format.extent | 8055 bytes | en_US |
dc.format.extent | 8962 bytes | en_US |
dc.format.extent | 7989 bytes | en_US |
dc.format.extent | 7989 bytes | en_US |
dc.format.extent | 8730 bytes | en_US |
dc.format.extent | 8051 bytes | en_US |
dc.format.extent | 8020 bytes | en_US |
dc.format.extent | 7710 bytes | en_US |
dc.format.extent | 8390 bytes | en_US |
dc.format.extent | 7988 bytes | en_US |
dc.format.extent | 7470 bytes | en_US |
dc.format.extent | 8383 bytes | en_US |
dc.format.extent | 7283 bytes | en_US |
dc.format.extent | 8000 bytes | en_US |
dc.format.extent | 8390 bytes | en_US |
dc.format.extent | 8061 bytes | en_US |
dc.format.extent | 7992 bytes | en_US |
dc.format.extent | 8381 bytes | en_US |
dc.format.extent | 8059 bytes | en_US |
dc.language | en-US | en_US |
dc.rights.uri | Usage Restrictions: This site (c) Massachusetts Institute of Technology 2003. Content within individual courses is (c) by the individual authors unless otherwise noted. The Massachusetts Institute of Technology is providing this Work (as defined below) under the terms of this Creative Commons public license ("CCPL" or "license"). The Work is protected by copyright and/or other applicable law. Any use of the work other than as authorized under this license is prohibited. By exercising any of the rights to the Work provided here, You (as defined below) accept and agree to be bound by the terms of this license. The Licensor, the Massachusetts Institute of Technology, grants You the rights contained here in consideration of Your acceptance of such terms and conditions. | en_US |
dc.subject | statistics | en_US |
dc.subject | economic applications | en_US |
dc.subject | probability theory | en_US |
dc.subject | sampling theory | en_US |
dc.subject | statistical estimation | en_US |
dc.subject | regression analysis | en_US |
dc.subject | hypothesis testing | en_US |
dc.subject | Elementary econometrics | en_US |
dc.subject | statistical tools | en_US |
dc.subject | economic data | en_US |
dc.subject | economics | en_US |
dc.subject | statistical | en_US |
dc.title | 14.30 Introduction to Statistical Method in Economics, Fall 2004 | en_US |
dc.title.alternative | Introduction to Statistical Method in Economics | en_US |
dc.type | Learning Object | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Economics | |