MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Advanced Materials for Micro- and Nano-Systems (AMMNS)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Advanced Materials for Micro- and Nano-Systems (AMMNS)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Workfunction Tuning of n-Channel MOSFETs Using Interfacial Yttrium Layer in Fully Silicided Nickel Gate

Author(s)
Yu, Hongpeng; Pey, Kin Leong; Choi, Wee Kiong; Chi, D.Z.; Fitzgerald, Eugene A.; Antoniadis, Dimitri A.; ... Show more Show less
Thumbnail
DownloadAMMNS007.pdf (614.9Kb)
Metadata
Show full item record
Abstract
Continual scaling of the CMOS technology requires thinner gate dielectric to maintain high performance. However, when moving into the sub-45 nm CMOS generation, the traditional poly-Si gate approach cannot effectively reduce the gate thickness further due to the poly-depletion effect. Fully silicided Ni metal gate (FUSI) has been proven to be a promising solution. Ni FUSI metal gate can significantly reduce gate-line sheet resistance, eliminate boron penetration to channels and has good process compatibility with high-k gate dielectric. But Ni FUSI has a mid-gap workfunction which is not suitable for high-performance CMOS applications where the band-edge workfunction is required. In this paper, we propose to tune the nickel (Ni) fully silicided metal gate (FUSI) workfunction via an yttrium/Si/Ni gate stack structure. The workfunction of such structure indicates that the Y interlayer can effectively tune the Ni FUSI workfunction from the mid gap to the conduction band edge of silicon by controlling the interlayer thickness. The gate stack workfunction starts to saturate to the pure yttrium value when the yttrium interlayer is >1.6 nm. This indicates the chemical potential of the material adjacent to gate electrode/gate insulator plays an important role in the determination of the workfunction.
Date issued
2007-01
URI
http://hdl.handle.net/1721.1/35833
Series/Report no.
Advanced Materials for Micro- and Nano-Systems (AMMNS)
Keywords
Metal Gate, FUSI, Ni Silicidation

Collections
  • Advanced Materials for Micro- and Nano-Systems (AMMNS)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.