Computer simulation of a novel technique for Radio-Frequency Ablation of ventricular arrhythmias
Author(s)
Rosbury, Tamara S
DownloadFull printable version (27.94Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Richard J. Cohen.
Terms of use
Metadata
Show full item recordAbstract
Ventricular Tachycardia (VT) is a rapid arrhythmia, most commonly due to reentrant electrical activity in the heart. A common treatment for VT is Radio-Frequency Ablation (RFA), which is minimally invasive, but requires maintenance of VT until the target site for ablation is determined. Most patients with VT cannot tolerate this maintenance phase due to hemodynamic instability and for those who are hemodynamically stable, the RFA procedure is successful in permanently terminating the VT in only approximately half of the cases. Therefore, the need for an RFA procedure that accurately localizes the site for ablation, or exit site of the reentry circuit, and is safe for unstable patients is evident. We believe utilization of the Single Equivalent Moving Dipole model and inverse problem in cardiology will prove to be efficient in localizing the exit site of the reentry circuit and guiding the ablation catheter to that localized site during the RFA procedure. In principle, our RFA technique only requires a single beat of VT to localize the exit site of the reentry circuit. The objective of this thesis is to determine in a simulation model if one can guide a catheter to the exit site of the reentry circuit using body surface potentials in order to ablate that site with radio-frequency energy. (cont.) In our new approach to RFA, we sought to design a finite element model to simulate VT due to reentry, develop an algorithm to localize the exit site of the reentry circuit through analysis of body surface potentials, localize the ablation catheter in both slow and fast VT, and advance the ablation catheter to the localized exit site of the reentry circuit. The proposed new RFA procedure promises to provide a new rapid and effective means for treatment of VT.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006. Includes bibliographical references (p. 169-175).
Date issued
2006Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.