Rheological and morphological characterization of hierarchically nanostructured materials
Author(s)
Wang, Benjamin Ning-Haw
DownloadFull printable version (19.55Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Chemical Engineering.
Advisor
Robert E. Cohen and Gareth H. McKinley.
Terms of use
Metadata
Show full item recordAbstract
Hierarchically nanostructured materials exhibit order on multiple length scales, with at least one of a few nanometers. The expected enhancements for applications using these materials include improved mechanical, thermal and electrical properties; however, control of the morphology which governs material performance and fabrication remains a challenge. The development of novel quantitative characterization techniques is important to connect the underlying morphology to relevant processing parameters and macroscopic behavior. Rheological and morphological analysis can illustrate these governing structure-property relationships for hierarchically nanostructured materials based on "O-D" polyhedral oligomeric silsesquioxane (POSS) particles, "l-D" carbon nanotubes (CNTs), and "2-D" clay nanoparticles. We develop a technique, using small-angle X-ray scattering, which provides quantitative measurements of the morphological characteristics of CNT films, including shape, orientation, CNT diameter, and spacing between CNTs. The method reflects a locally averaged measurement that simultaneously samples from millions of CNTs while maintaining the necessary precision to resolve spatial morphological differences within a film. (cont.) Using this technique we elucidate spatial variation in pristine films and study changes in the film structure as a result of mechanical manipulations such as uniaxial compression and capillarity-induced densification. We study the rheological properties of blends formed from POSS and clay nanoparticles incorporated into PMMA in shear and extensional flow fields. Relevant morphological parameters, such as volume fraction, aspect ratio of the clay particles, and POSS miscibility are determined using wide angle X-ray scattering and transmission electron microscopy. The interdependence between melt rheology and morphology are understood within a theoretical framework for percolated physical networks, providing for comprehensive guidance regarding the performance and processing of POSS and clay based nanocomposites.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2007. Vita. Includes bibliographical references (leaves 154-168).
Date issued
2007Department
Massachusetts Institute of Technology. Department of Chemical EngineeringPublisher
Massachusetts Institute of Technology
Keywords
Chemical Engineering.