MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient tools for the design and simulation of microelectromechanical and microfluidic systems

Author(s)
Pinto Coelho, Carlos (Carlos Freire da Silva)
Thumbnail
DownloadFull printable version (9.917Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Jacob K. White.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/42234 http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In air-packaged surface micromachined devices and microfluidic devices the surface to volume ratio is such that drag forces play a very important role in device behavior and performance. Especially for surface micromachined devices, the amount of drag is greatly influenced by the presence of the nearby substrate. In this thesis a precorrected FFT accelerated boundary element method specialized for calculating the drag force on structures above a substrate is presented. The method uses the Green's function for Stokes flow bounded by an infinite plane to implicitly represent the device substrate, requiring a number of modifications to the precorrected FFT algorithm. To calculate the velocity due to force distribution on a panel near a substrate an analytical panel integration algorithm was also developed. Computational results demonstrate that the use of the implicit representation of the substrate reduces computation time and memory while increasing the solution accuracy. The results also demonstrate that surprisingly, and unfortunately, even though representing the substrate implicitly has many benefits it does not completely decouple discretization fineness from distance to the substrate. To simulate the time dependent behavior of micromechanical and microfluidic systems, a stable velocity implicit time stepping scheme coupling the precorrected FFT solver with rigid body dynamics was introduced and demonstrated. The ODE library was integrated with the solver to enable the simulation of systems with collisions, contacts and friction. Several techniques for speeding up the calculation of each time step were presented and tested. The time integration algorithm was successfully used to simulate the behavior of several real-world microfluidic devices.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.
 
Includes bibliographical references (p. 131-136).
 
Date issued
2007
URI
http://dspace.mit.edu/handle/1721.1/42234
http://hdl.handle.net/1721.1/42234
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.