MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nodal photolithography : lithography via far-field optical nodes in the resist

Author(s)
Winston, Donald, S.M. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (3.373Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Karl K. Berggren.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, I investigate one approach - stimulated emission depletion - to surmounting the diffraction limitation of optical lithography. This approach uses farfield optical nodes to orchestrate reversible, saturable optical transitions in certain photoresist compounds. After addressing prior work in resolution enhancement via optical nodes (for metastable atom localization, reversible absorbance modulation, and fluorescence microscopy), I examine the issues of resist formulation, optical pulse width bounds due to resist kinetics, and patterning schemes for low- and high-volume throughput. The experimental realization of stimulated emission depletion is described, and challenges for lithography using this technique are discussed.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
 
Includes bibliographical references (p. 53-54).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/43065
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.