MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

SEEC: A Framework for Self-aware Computing

Author(s)
Hoffmann, Henry; Maggio, Martina; Santambrogio, Marco D.; Leva, Alberto; Agarwal, Anant
Thumbnail
DownloadMIT-CSAIL-TR-2010-049.pdf (1.492Mb)
Other Contributors
Computer Architecture
Advisor
Anant Agarwal
Metadata
Show full item record
Abstract
As the complexity of computing systems increases, application programmers must be experts in their application domain and have the systems knowledge required to address the problems that arise from parallelism, power, energy, and reliability concerns. One approach to relieving this burden is to make use of self-aware computing systems, which automatically adjust their behavior to help applications achieve their goals. This paper presents the SEEC framework, a unified computational model designed to enable self-aware computing in both applications and system software. In the SEEC model, applications specify goals, system software specifies possible actions, and the SEEC framework is responsible for deciding how to use the available actions to meet the application-specified goals. The SEEC framework is built around a general and extensible control system which provides predictable behavior and allows SEEC to make decisions that achieve goals while optimizing resource utilization. To demonstrate the applicability of the SEEC framework, this paper presents fivedifferent self-aware systems built using SEEC. Case studies demonstrate how these systems can control the performance of the PARSEC benchmarks, optimize performance per Watt for a video encoder, and respond to unexpected changes in the underlying environment. In general these studies demonstrate that systems built using the SEEC framework are goal-oriented, predictable, adaptive, and extensible.
Date issued
2010-10-13
URI
http://hdl.handle.net/1721.1/59519
Series/Report no.
MIT-CSAIL-TR-2010-049
Keywords
Autonomic Computing, Adaptive Computing, Multicore, Control Theory

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.