Advanced Search
DSpace@MIT

18.702 Algebra II, Spring 2008

Research and Teaching Output of the MIT Community

Show simple item record

dc.contributor.author Artin, Michael
dc.coverage.temporal Spring 2008
dc.date.accessioned 2011-11-04T06:11:09Z
dc.date.available 2011-11-04T06:11:09Z
dc.date.issued 2008-06
dc.identifier 18.702-Spring2008
dc.identifier.other 18.702
dc.identifier.other IMSCP-MD5-e3d2762641d0c5b4bb1c653cdead8a9d
dc.identifier.uri http://hdl.handle.net/1721.1/66919
dc.description.abstract This undergraduate level course follows Algebra I. Topics include group representations, rings, ideals, fields, polynomial rings, modules, factorization, integers in quadratic number fields, field extensions, and Galois theory. en
dc.language.iso en-US
dc.relation.hasversion http://www.acikders.org.tr/course/view.php?id=5
dc.relation.isbasedon http://hdl.handle.net/1721.1/45579
dc.rights This site (c) Massachusetts Institute of Technology 2011. Content within individual courses is (c) by the individual authors unless otherwise noted. The Massachusetts Institute of Technology is providing this Work (as defined below) under the terms of this Creative Commons public license ("CCPL" or "license") unless otherwise noted. The Work is protected by copyright and/or other applicable law. Any use of the work other than as authorized under this license is prohibited. By exercising any of the rights to the Work provided here, You (as defined below) accept and agree to be bound by the terms of this license. The Licensor, the Massachusetts Institute of Technology, grants You the rights contained here in consideration of Your acceptance of such terms and conditions. en
dc.subject Sylow theorems en
dc.subject Group Representations en
dc.subject definitions en
dc.subject unitary representations en
dc.subject characters en
dc.subject Schur's Lemma en
dc.subject Rings: Basic Definitions en
dc.subject homomorphisms en
dc.subject fractions en
dc.subject Factorization en
dc.subject unique factorization en
dc.subject Gauss' Lemma en
dc.subject explicit factorization en
dc.subject maximal ideals en
dc.subject Quadratic Imaginary Integers en
dc.subject Gauss Primes en
dc.subject quadratic integers en
dc.subject ideal factorization en
dc.subject ideal classes en
dc.subject Linear Algebra over a Ring en
dc.subject free modules en
dc.subject integer matrices en
dc.subject generators and relations en
dc.subject structure of abelian groups en
dc.subject Rings: Abstract Constructions en
dc.subject relations in a ring en
dc.subject adjoining elements en
dc.subject Fields: Field Extensions en
dc.subject algebraic elements en
dc.subject degree of field extension en
dc.subject ruler and compass en
dc.subject symbolic adjunction en
dc.subject finite fields en
dc.subject Fields: Galois Theory en
dc.subject the main theorem en
dc.subject cubic equations en
dc.subject symmetric functions en
dc.subject primitive elements en
dc.subject quartic equations en
dc.subject quintic equations en
dc.title 18.702 Algebra II, Spring 2008 en
dc.title.alternative Algebra II en
dc.audience.educationlevel Undergraduate
dc.subject.cip 270102 en
dc.subject.cip Algebra and Number Theory en
dc.date.updated 2011-11-04T06:11:09Z


Files in this item

Name Size Format Description
18-702-spring-200 ... 16.04Kb HTML

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

MIT-Mirage