MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Energy pathways and structures of oceanic eddies from the ECCO2 State Estimate and Simplified Models

Author(s)
Chen, Ru, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (20.95Mb)
Other Contributors
Woods Hole Oceanographic Institution.
Advisor
Carl Wunsch and Glenn Flierl.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Studying oceanic eddies is important for understanding and predicting ocean circulation and climate variability. The central focus of this dissertation is the energy exchange between eddies and mean ow and banded structures in the low-frequency component of the eddy eld. A combination of a realistic eddy-permitting ocean state estimate and simplied theoretical models is used to address the following speci c questions. (1) What are the major spatial characteristics of eddy-mean ow interaction from an energy perspective? Is eddy-mean ow interaction a local process in most ocean regions? (2) The banded structures in the low-frequency eddy eld are termed striations. How much oceanic variability is associated with striations? How does the time-mean circulation, for example a subtropical gyre or constant mean ow, inuence the origin and characteristics of striations? How much do striations contribute to the energy budget and tracer mixing?
Description
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2013.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (p. 193-206).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/79154
Department
Joint Program in Physical Oceanography; Woods Hole Oceanographic Institution; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Joint Program in Physical Oceanography., Earth, Atmospheric, and Planetary Sciences., Woods Hole Oceanographic Institution.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.