Show simple item record

dc.contributor.advisorCarl Wunsch and Glenn Flierl.en_US
dc.contributor.authorChen, Ru, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherWoods Hole Oceanographic Institution.en_US
dc.date.accessioned2013-06-17T19:02:54Z
dc.date.available2013-06-17T19:02:54Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/79154
dc.descriptionThesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2013.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 193-206).en_US
dc.description.abstractStudying oceanic eddies is important for understanding and predicting ocean circulation and climate variability. The central focus of this dissertation is the energy exchange between eddies and mean ow and banded structures in the low-frequency component of the eddy eld. A combination of a realistic eddy-permitting ocean state estimate and simplied theoretical models is used to address the following speci c questions. (1) What are the major spatial characteristics of eddy-mean ow interaction from an energy perspective? Is eddy-mean ow interaction a local process in most ocean regions? (2) The banded structures in the low-frequency eddy eld are termed striations. How much oceanic variability is associated with striations? How does the time-mean circulation, for example a subtropical gyre or constant mean ow, inuence the origin and characteristics of striations? How much do striations contribute to the energy budget and tracer mixing?en_US
dc.description.statementofresponsibilityby Ru Chen.en_US
dc.format.extent206 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectJoint Program in Physical Oceanography.en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.subjectWoods Hole Oceanographic Institution.en_US
dc.titleEnergy pathways and structures of oceanic eddies from the ECCO2 State Estimate and Simplified Modelsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentJoint Program in Physical Oceanographyen_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
dc.identifier.oclc846845457en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record