MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Application of infrared birefringence imaging for measuring residual stress in multicrystalline, quasi-mono, dendritic web, and string ribbon silicon for solar cells

Author(s)
Castellanos Rodríguez, Sergio
Thumbnail
DownloadFull printable version (13.50Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Tonio Buonassisi.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
One of the parameters with highest impact on photovoltaic module cost is manufacturing yield during solar cell production. Yield is, to a great extent, directly affected by the crystallization technique used to grow the substrate wafers due to its role in generating residual stresses that can lead to fracture upon wafer processing and handling. This thesis explores the nature, impact, and a method for quantifying residual stresses in silicon wafers used for solar cells. The combination of an infrared birefringence imaging technique along with a sectioning method is proposed as an approach to spatially resolve and decouple the in-plane residual stress components on four wafers originating from different growth methods. The suitability of this technique is verified, and recommendations for future expansion of this work are presented.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 96-102).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/88385
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.