MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT OpenCourseWare (MIT OCW) - Archived Content
  • MIT OCW Archived Courses
  • MIT OCW Archived Courses
  • View Item
  • DSpace@MIT Home
  • MIT OpenCourseWare (MIT OCW) - Archived Content
  • MIT OCW Archived Courses
  • MIT OCW Archived Courses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

3.46 Photonic Materials and Devices, Spring 2004

Author(s)
Kimerling, Lionel C.
Thumbnail
Download3-46Spring2004/OcwWeb/Materials-Science-and-Engineering/3-46Spring2004/CourseHome/index.htm (16.22Kb)
Alternative title
Photonic Materials and Devices
Terms of use
Usage Restrictions: This site (c) Massachusetts Institute of Technology 2003. Content within individual courses is (c) by the individual authors unless otherwise noted. The Massachusetts Institute of Technology is providing this Work (as defined below) under the terms of this Creative Commons public license ("CCPL" or "license"). The Work is protected by copyright and/or other applicable law. Any use of the work other than as authorized under this license is prohibited. By exercising any of the rights to the Work provided here, You (as defined below) accept and agree to be bound by the terms of this license. The Licensor, the Massachusetts Institute of Technology, grants You the rights contained here in consideration of Your acceptance of such terms and conditions.
Metadata
Show full item record
Abstract
Optical and optoelectronic properties of semiconductors, ceramics, and polymers. Electronic structure, refractive index, electroluminescence, electro-optic and magneto-optic effects, and laser phenomena. Microphotonic materials and structures; photonic band gap materials. Materials design and processing for lasers, waveguides, modulators, switches, displays and optoelectronic integrated circuits. Alternate years. Description from course home page: This course covers the theory, design, fabrication and applications of photonic materials and devices. After a survey of optical materials design for semiconductors, dielectrics and polymers, the course examines ray optics, electromagnetic optics and guided wave optics; physics of light-matter interactions; and device design principles of LEDs, lasers, photodetectors, modulators, fiber and waveguide interconnects, optical filters, and photonic crystals. Device processing topics include crystal growth, substrate engineering, thin film deposition, etching and process integration for dielectric, silicon and compound semiconductor materials. The course also covers microphotonic integrated circuits and applications in telecom/datacom systems. Course assignments include three design projects that emphasize materials, devices and systems applications.
Date issued
2004-06
URI
http://hdl.handle.net/1721.1/34938
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Other identifiers
3.46-Spring2004
local: 3.46
local: IMSCP-MD5-3ffb7be53a305983f7fe0c50ceb86f4e
Keywords
Optical materials design, Ray optics, electromagnetic optics, guided wave optics, light-matter interactions, LED, laser, photodetector, modulator, interconnect, optical filter, photonic crystals, crystal growth, substrate engineering, thin film deposition, microphotonic integrated circuits, telecom and datacom systems

Collections
  • MIT OCW Archived Courses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.