MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Delphi: A Software Controller for Mobile Network Selection

Author(s)
Deng, Shuo; Sivaraman, Anirudh; Balakrishnan, Hari
Thumbnail
DownloadMIT-CSAIL-TR-2016-004.pdf (440.1Kb)
Other Contributors
Networks & Mobile Systems
Advisor
Hari Balakrishnan
Metadata
Show full item record
Abstract
This paper presents Delphi, a mobile software controller that helps applications select the best network among available choices for their data transfers. Delphi optimizes a specified objective such as transfer completion time, or energy per byte transferred, or the monetary cost of a transfer. It has four components: a performance predictor that uses features gathered by a network monitor, and a traffic profiler to estimate transfer sizes near the start of a transfer, all fed into a network selector that uses the prediction and transfer size estimate to optimize an objective.For each transfer, Delphi either recommends the best single network to use, or recommends Multi-Path TCP (MPTCP), but crucially selects the network for MPTCP s primary subflow . The choice of primary subflow has a strong impact onthe transfer completion time, especially for short transfers.We designed and implemented Delphi in Linux. It requires no application modifications. Our evaluation shows that Delphi reduces application network transfer time by 46% for Web browsing and by 49% for video streaming, comparedwith Android s default policy of always using Wi-Fi when it is available. Delphi can also be configured to achieve high throughput while being battery-efficient: in this configuration, it achieves 1.9x the throughput of Android s default policy while only consuming 6% more energy.
Date issued
2016-02-25
URI
http://hdl.handle.net/1721.1/101636
Series/Report no.
MIT-CSAIL-TR-2016-004
Keywords
MPTCP, Network Selection, Wi-Fi, LTE

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.