MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Propositional and Activity Monitoring Using Qualitative Spatial Reasoning

Author(s)
Lane, Spencer Dale
Thumbnail
DownloadMIT-CSAIL-TR-2016-016.pdf (3.246Mb)
Other Contributors
Model-based Embedded and Robotic Systems
Advisor
Brian Williams
Metadata
Show full item record
Abstract
Communication is the key to effective teamwork regardless of whether the team members are humans or machines. Much of the communication that makes human teams so effective is non-verbal; they are able to recognize the actions that the other team members are performing and take their own actions in order to assist. A robotic team member should be able to make the same inferences, observing the state of the environment and inferring what actions are being taken. In this thesis I introduce a novel approach to the combined problem of activity recognition and propositional monitoring. This approach breaks down the problem into smaller sub-tasks. First, the raw sensor input is parsed into simple, easy to understand primitive semantic relationships known as qualitative spatial relations (QSRs). These primitives are then combined to estimate the state of the world in the same language used by most planners, planning domain definition language (PDDL) propositions. Both the primitives and propositions are combined to infer the status of the actions that the human is taking. I describe an algorithm for solving each of these smaller problems and describe the modeling process for a variety of tasks from an abstracted electronic component assembly (ECA) scenario. I implemented this scenario on a robotic testbed and collected data of a human performing the example actions.
Description
SM thesis
Date issued
2016-12-14
URI
http://hdl.handle.net/1721.1/105848
Series/Report no.
MIT-CSAIL-TR-2016-016
Keywords
hybrid systems, filtering, activity recognition, qualitative spatial relations

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.