Show simple item record

dc.contributor.advisorMartin Rinard
dc.contributor.authorCambronero, Joseen_US
dc.contributor.authorRinard, Martinen_US
dc.contributor.otherProgram Analysis and Compilationen
dc.date.accessioned2017-12-22T21:45:58Z
dc.date.available2017-12-22T21:45:58Z
dc.date.issued2017-12-21
dc.identifier.urihttp://hdl.handle.net/1721.1/112949
dc.description.abstractWe present CrowdLearn, a new system that processes an existing corpus of crowdsourced machine learning programs to learn how to generate effective pipelines for solving supervised machine learning problems. CrowdLearn uses a probabilistic model of program likelihood, conditioned on the current sequence of pipeline components and on the characteristics of the input data to the next component in the pipeline, to predict candidate pipelines. Our results highlight the effectiveness of this technique in leveraging existing crowdsourced programs to generate pipelines that work well on a range of supervised learning problems.en_US
dc.format.extent14 p.en_US
dc.relation.ispartofseriesMIT-CSAIL-TR-2017-015
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectprogram synthesisen_US
dc.subjectautomated machine learningen_US
dc.subjectcode miningen_US
dc.titleGenerating Component-based Supervised Learning Programs From Crowdsourced Examplesen_US
dc.date.updated2017-12-22T21:45:58Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record