MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Physics
  • Physics - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Physics
  • Physics - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Algorithms and devices for metropolitan-scale quantum key distribution

Author(s)
Bunandar, Darius.
Thumbnail
Download1134391965-MIT.pdf (40.17Mb)
Alternative title
Algorithms and devices for metropolitan-scale QKD
Other Contributors
Massachusetts Institute of Technology. Department of Physics.
Advisor
Dirk R. Englund and Vladan Vuletić.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Secure communication against any possible eavesdropper is important in today's Internet. Quantum key distribution (QKD), along with the one-time pad cryptosystem, provides a quantum-secure way for two distant parties to communicate with composable security. It has recently become clear that a wide-spread utilization of QKD warrants improvements in its implementations. Theoretically, the security of QKD is difficult to analyze and the effects of imperfections on key rates is difficult to estimate. Practically, QKD requires miniaturization and an operation speed comparable to current Internet communications. In this thesis, we develop a robust numerical approach for calculating the key rates for arbitrary QKD protocols with explicitly quantifiable security. The approach formulates semidefinite programs that take, as inputs, the observed statistics from a QKD session and outputs the guaranteed key rates. Next, in an effort to boost the operation speed of current QKD systems, we describe a large-alphabet QKD scheme that can transmit multiple secret bits of information per photon while being immune against a photon-number side channel attack. We also demonstrate the feasibility of this system with an intercity field demonstration that pushes the boundary on its key generation rate. We then present the miniaturization of QKD systems using the silicon photonics platform which allows for the integration of multiple high-speed photonic operations into a single circuit. We present the first intercity field demonstrations of QKD that demonstrates silicon photonics-supported by the currently existing CMOS technology-can pave the way for a high-speed metropolitan-scale quantum communication network.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 177-188).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/123414
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Physics - Ph.D. / Sc.D.
  • Physics - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.