MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Plasma Science and Fusion Center (PSFC)
  • Journal Article Series (JA)
  • View Item
  • DSpace@MIT Home
  • Plasma Science and Fusion Center (PSFC)
  • Journal Article Series (JA)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards Fast and Accurate Predictions of Radio Frequency Power Deposition and Current Profile via Data-driven Modeling

Author(s)
Wallace, Greg M.; Bai, Z.; Sadre, R.; Perciano, T.; Bertelli, N.; Shiraiwa, S.; Bethel, E.W.; Wright, John C.; ... Show more Show less
Thumbnail
Download22ja004_full.pdf (6.294Mb)
Metadata
Show full item record
Abstract
Three machine learning techniques (multilayer perceptron, random forest, and Gaussian process) provide fast surrogate models for lower hybrid current drive (LHCD) simulations. A single GENRAY/CQL3D simulation without radial diffusion of fast elec- trons requires several minutes of wall-clock time to complete, which is acceptable for many purposes, but too slow for integrated modeling and real-time control applications. The machine learning models use a database of 16,000+ GENRAY/CQL3D simulations for training, validation, and testing. Latin hypercube sampling methods ensure that the database covers the range of 9 input parameters (ne0, Te0, Ip, Bt, R0, n||, Zeff , Vloop, PLHCD) with sufficient density in all regions of parameter space. The surrogate models reduce the inference time from minutes to ∼ms with high accuracy across the input parameter space.
Description
Submitted for publication in Journal of Plasma Physics
Date issued
2022-04
URI
https://hdl.handle.net/1721.1/158620
Department
Massachusetts Institute of Technology. Plasma Science and Fusion Center
Journal
Journal of Plasma Physics
Publisher
Cambridge University Press
Other identifiers
22ja004

Collections
  • Journal Article Series (JA)
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.