Show simple item record

dc.contributor.authorWallace, Greg M.en_US
dc.contributor.authorBai, Z.en_US
dc.contributor.authorSadre, R.en_US
dc.contributor.authorPerciano, T.en_US
dc.contributor.authorBertelli, N.en_US
dc.contributor.authorShiraiwa, S.en_US
dc.contributor.authorBethel, E.W.en_US
dc.contributor.authorWright, John C.en_US
dc.date.accessioned2025-03-21T20:15:10Z
dc.date.available2025-03-21T20:15:10Z
dc.date.issued2022-04
dc.identifier22ja004
dc.identifier.urihttps://hdl.handle.net/1721.1/158620
dc.descriptionSubmitted for publication in Journal of Plasma Physics
dc.description.abstractThree machine learning techniques (multilayer perceptron, random forest, and Gaussian process) provide fast surrogate models for lower hybrid current drive (LHCD) simulations. A single GENRAY/CQL3D simulation without radial diffusion of fast elec- trons requires several minutes of wall-clock time to complete, which is acceptable for many purposes, but too slow for integrated modeling and real-time control applications. The machine learning models use a database of 16,000+ GENRAY/CQL3D simulations for training, validation, and testing. Latin hypercube sampling methods ensure that the database covers the range of 9 input parameters (ne0, Te0, Ip, Bt, R0, n||, Zeff , Vloop, PLHCD) with sufficient density in all regions of parameter space. The surrogate models reduce the inference time from minutes to ∼ms with high accuracy across the input parameter space.
dc.publisherCambridge University Pressen_US
dc.relation.isversionofdoi.org/10.1017/s0022377822000708
dc.sourcePlasma Science and Fusion Centeren_US
dc.titleTowards Fast and Accurate Predictions of Radio Frequency Power Deposition and Current Profile via Data-driven Modelingen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Center
dc.relation.journalJournal of Plasma Physics


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record