Show simple item record

dc.contributor.authorRakhlin, Alexander
dc.contributor.authorPanchenko, Dmitry
dc.contributor.authorMukherjee, Sayan
dc.date.accessioned2005-12-22T01:18:58Z
dc.date.available2005-12-22T01:18:58Z
dc.date.issued2004-01-27
dc.identifier.otherMIT-CSAIL-TR-2004-002
dc.identifier.otherAIM-2004-001
dc.identifier.otherCBCL-233
dc.identifier.urihttp://hdl.handle.net/1721.1/30443
dc.description.abstractIn this paper we focus on the problem of estimating a boundeddensity using a finite combination of densities from a givenclass. We consider the Maximum Likelihood Procedure (MLE) and the greedy procedure described by Li and Barron. Approximation and estimation bounds are given for the above methods. We extend and improve upon the estimation results of Li and Barron, and in particular prove an $O(\frac{1}{\sqrt{n}})$ bound on the estimation error which does not depend on the number of densities in the estimated combination.
dc.format.extent11 p.
dc.format.extent9297095 bytes
dc.format.extent498791 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesMassachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory
dc.subjectAI
dc.subjectdensity estimation
dc.subjectMLE
dc.titleRisk Bounds for Mixture Density Estimation


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record