MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparing Network Coding with Multicommodity Flow for the k-pairs Communication Problem

Author(s)
Harvey, Nicholas J.; Kleinberg, Robert D.; Lehman, April Rasala
Thumbnail
DownloadMIT-CSAIL-TR-2004-078.ps (13759Kb)
Additional downloads
Metadata
Show full item record
Abstract
Given a graph G = (V,E) and k source-sink pairs of vertices, this papers investigates the maximum rate r at which all pairs can simultaneously communicate. We view this problem from two perspectives and compare their advantages. In the multicommodity flow formulation, a solution provides dedicated bandwidth r between each source-sink pair. In the information flow formulation, a vertex can transmit a function of the information it received thereby allowing multiple source-sink pairs to share bandwidth. For directed acyclic graphs with n vertices, we show that the rate achievable in the information flow formulation can be a multiplicative factor n larger than the rate achievable in the multicommodity flow formulation. It is well known [5] that for undirected graphs with n vertices, in the multicommodity flow formulation, the maximum rate achievable can be an O(1/log|V|) multiplicative factor smaller than the value of the sparsest cut. We extend this result to show that the maximum rate achievable in the information flow setting can be an O(1/log|V|) multiplicative factor smaller than the sparsest cut value.For directed acyclic graphs G, we define a parameter called the value of the most meager cut which is an upper bound for the maximum rate achievable in the information flow setting.We also present an example illustrating that this upper bound is not always tight.
Date issued
2004-11-24
URI
http://hdl.handle.net/1721.1/30508
Other identifiers
MIT-CSAIL-TR-2004-078
MIT-LCS-TR-964
Series/Report no.
Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.